Responses (1)
We will write log_b for the function log base b. A well known rule of logarithms is that log_b(x)=log_a(x)/log_a(x). Consequently we have:
log_2(x) + log_4(x)=1
log_2(x) + log_2(x)/log_2(4)=1
log_2(x) +log_2(x)/2=1 (since 4=2^2)
log_2(x)(1+1/2)=1
log_2(x)(3/2)=1
log_2(x)=2/3
x=2^(2/3) (since 2^log_2(x)=x)